Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add filters

Database
Language
Document Type
Year range
1.
Environ Pollut ; 324: 121418, 2023 May 01.
Article in English | MEDLINE | ID: covidwho-2258953

ABSTRACT

Numerous studies have investigated the associations between COVID-19 risks and long-term exposure to air pollutants, revealing considerable heterogeneity and even contradictory regional results. Studying the spatial heterogeneity of the associations is essential for developing region-specific and cost-effective air-pollutant-related public health policies for the prevention and control of COVID-19. However, few studies have investigated this issue. Using the USA as an example, we constructed single/two-pollutant conditional autoregressions with random coefficients and random intercepts to map the associations between five air pollutants (PM2.5, O3, SO2, NO2, and CO) and two COVID-19 outcomes (incidence and mortality) at the state level. The attributed cases and deaths were then mapped at the county level. This study included 3108 counties from 49 states within the continental USA. The county-level air pollutant concentrations from 2017 to 2019 were used as long-term exposures, and the county-level cumulative COVID-19 cases and deaths through May 13, 2022, were used as outcomes. Results showed that considerably heterogeneous associations and attributable COVID-19 burdens were found in the USA. The COVID-19 outcomes in the western and northeastern states appeared to be unaffected by any of the five pollutants. The east of the USA bore the greatest COVID-19 burdens attributable to air pollution because of its high pollutant concentrations and significantly positive associations. PM2.5 and CO were significantly positively associated with COVID-19 incidence in 49 states on average, whereas NO2 and SO2 were significantly positively associated with COVID-19 mortality. The remaining associations between air pollutants and COVID-19 outcomes were not statistically significant. Our study provided implications regarding where a major concern should be placed on a specific air pollutant for COVID-19 control and prevention, as well as where and how to conduct additional individual-based validation research in a cost-effective manner.


Subject(s)
Air Pollutants , Air Pollution , COVID-19 , Environmental Pollutants , Humans , United States/epidemiology , Air Pollutants/analysis , Nitrogen Dioxide , COVID-19/epidemiology , Air Pollution/analysis , Particulate Matter/analysis , Environmental Exposure/analysis
SELECTION OF CITATIONS
SEARCH DETAIL